Some Tungsten+**Bronze Compounds in the BaO**+**Nd2O3**+**TiO2**+**Ta2O5 System**

 $X. M. Chen, * G. L. Lü, † J. S. Yang, * and Y. J. Wu*$

**Laboratory of Materials for Electronics & Communication, Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027; and* -*Analytical Center, Xixi Campus, Zhejiang University, Hangzhou 310007, China*

Received February 11, 1999; in revised form August 3, 1999; accepted August 10, 1999

Some dielectric oxides have been synthesized and characterized in the BaO-Nd₂O₃-TiO₂-Ta₂O₅ system. Through X-ray powder diffraction analysis, $Ba_4Nd_2Ti_4Ta_6O_{30}$ and Ba_5Nd $Ti_{3}Ta_{7}O_{30}$ are identified as tetragonal tungsten-bronze compounds, and their lattice constants are $a = b = 12.4007(7)$ Å, $c = 3.9030(3)$ Å and $a = b = 12.4826(6)$ Å, $c = 3.9295(5)$ Å, respectively. The possible space group is *P*4*bm*. The polycrystalline samples of these compounds exhibit high dielectric constant $(137 \sim 160)$ and low dielectric loss, tan δ < 7×10^{-4} at 1 MHz. (1999 Academic Press

1. INTRODUCTION

Dielectric ceramics in the system $BaO-Nd₂O₃$ have received much attention because of their important application as microwave dielectric resonators and filters $(1-3)$ $(1-3)$, and the most important compositions fall in the solid solution of $Ba_{6-3x}Nd_{8+2x}Ti_{18}O_{54}$ with the so-called new tungsten-bronze structure [\(4\)](#page-3-0). With appropriate modification, a high dielectric constant (80–94), high Qf value $(>5,000 \text{ GHz})$, and small temperature coefficient of resonant frequency $(-15 \text{ ppm}/^{\circ}\text{C} < \tau_f < 15 \text{ ppm}/^{\circ}\text{C})$ can be obtained in these ceramics [\(5, 6\).](#page-3-0)

Searching for new dielectric ceramics with higher dielectric constant ($\epsilon > 100$), the authors recently investigated the $BaO-Nd_2O_3-TiO_2-Ta_2O_5$ system, and the previous work suggested the presence of some new compounds with $A_6B_{10}O_{30}$ normal tungsten-bronze structure. Although the compounds with $A_6B_{10}O_{30}$ tungsten-bronze structure generally show ferroelectric nature and high dielectric loss [\(7, 8\)](#page-3-0), the present ceramics have high dielectric constant and very low dielectric loss [\(9,](#page-3-0) [10\).](#page-3-0) Therefore these ceramics have great potential in microwave application if the temperature coefficient can be suppressed to an acceptable level, and the understanding of their crystal structures is a key point for such property modification.

In the present paper, we report the structure characterization of $Ba_4Nd_2Ti_4Ta_6O_{30}$ and $Ba_5NdTi_3Ta_7O_{30}$ compounds together with the room-temperature dielectric properties.

2. EXPERIMENTAL

The compounds $Ba_4Nd_2Ti_4Ta_6O_{30}$ and Ba_5 The compounds $Ba_4Nd_2Ti_4Ta_6O_{30}$ and Ba_5NdTi_3
Ta₇O₃₀ were synthesized through solid state reaction from the high-purity powders of BaCO₃ ($>99.95\%$), Nd₂O₃ the high-purity powders of BaCO₃ (>99.95%), Nd₂O₃ (>99.99%), TiO₂ (>99.99%), and Ta₂O₅(>99.99%). The starting powders were carefully mixed by ball-milling with zirconia media in ethanol for 24 h then were heated at 1260 \degree C (for the former) or 1300 \degree C (for the latter) in air for 3 h. These heated powders were pressed into disc compacts at 98 MPa after grinding and then were sintered at 1310° C (for the former) and 1450° C (for the later) in air for 3 h to yield dense polycrystalline samples. The basic reaction for the synthesis could be represented by

$$
4BaCO3 + Nd2O3 + 4TiO2 + 3Ta2O5
$$

$$
\rightarrow Ba4Nd2Ti4Ta6O30 + 4CO2
$$
 (g)

or

$$
10BaCO3 + Nd2O3 + 6TiO2 + 7Ta2O5
$$

\n
$$
\rightarrow 2Ba5NdTi3Ta7O30 + 10CO2 (g).
$$

Finally, the sintered polycrystalline samples were ground to prepare the powders for X-ray diffraction analysis.

X-ray diffraction measurements were conducted with a graphite diffracted beam monochromator (Rigaku D/max-3B, Cu*K* α , $\lambda = 1.5406$ Å) using the following settings: step scan, $10-100^{\circ}$ range, 0.02° step size, and 10 s collection time. An initial set of lattice parameters was obtained by least-squares refinement of the angular positions of the reflections obtained in the 2θ range 10–100 $^{\circ}$. Rietveld refinements were then carried out in an isotropic approximation of the thermal parameters, using the program DBW9006.

C exponentially consider the control \mathbf{a}_4 of \mathbf{a}_5 or \mathbf{a}_6 or \mathbf{a}_9 and $Ba5NdTi3Ta7O30$			
$Ba_4Nd_2Ti_4Ta_6O_{30}$	$Ba5NdTi3Ta7O30$		
P4bm	P4bm		
12.4007(7)	12.4826(6)		
12.4007(7)	12.4826(6)		
3.9030(3)	3.9295(5)		
90	90		
90	90		
90	90		
599.73(1)	611.69(2)		
2622.09	2721.11		
$Z=1$	$Z=1$		
$10^{\circ}-100^{\circ}$, 10 s	$10^{\circ}-100^{\circ}$, $10 s$		
CuK α 1 (λ = 1.5406 Å)	CuK α 1 (λ = 1.5406 (Å)		
$R_{\rm B} = 0.045, R_{\rm P} = 0.061,$	$R_{\rm B} = 0.036$, $R_{\rm P} = 0.062$,		
$R_{\rm WP} = 0.079$	$R_{\rm WP} = 0.082$		

TABLE 1
waters for **D**₂ NH Ti T₂ O Crystallographic Parameters for $Ba_4Nd_2Ti_4Ta_6O_{30}$ and

The dielectric characterization was performed for the polycrystalline samples with an LCR meter (HP4284A) at 1 MHz.

3. RESULTS AND DISCUSSION

Through the initial least-squares refinement, the patterns of $Ba_4Nd_2Ti_4Ta_6O_{30}$ and $Ba_5NdTi_3Ta_7O_{30}$ were indexed to the tetragonal unit cells with $a = b = 12.4007$, $c = 3.9030$ and $a = b = 12.4826$, $c = 3.9295$, similar to those for $Ba_4La_2Ti_4Nb_6O_{30}$ [\(11\)](#page-3-0) and $Ba_5LaTi_3Nb_7O_{30}$ [\(12\),](#page-3-0) respectively. Because the only $h(0)$: $h = 2n + 1$ and $h(0)$: $h = 2n + 1$

TABLE 2 Positional and Thermal Parameters for $Ba₄Nd₂Ti₄Ta₆O₃₀$

Atom	Position	$\mathbf x$	y	\overline{z}	Occupancy	$B(\AA^2)$
Ba(1)	2a	0.0000	0.0000	0.0000	0.6667	1.00(4)
Nd(1)	2a	0.0000	0.0000	0.0000	0.3333	1.00(4)
Ba(2)	4g	0.1663(3)	0.3237(3)	0.0000	0.6667	1.55(3)
Nd(2)	4g	0.1663(3)	0.3237(3)	0.0000	0.3333	1.55(3)
Ti(1)	4h	0.2134(4)	0.0739(4)	0.5000	0.4000	0.65(3)
Ta(1)	4h	0.2134(4)	0.0739(4)	0.5000	0.6000	0.65(3)
Ti(2)	4h	0.4254(4)	0.2848(4)	0.5000	0.4000	0.32(10)
Ta(2)	4h	0.4254(4)	0.2848(5)	0.5000	0.6000	0.32(10)
Ti(3)	2d	0.5000	0.0000	0.5000	0.4000	0.97(2)
Ta(3)	2d	0.5000	0.0000	0.5000	0.6000	0.97(2)
O(1)	4h	0.2863(21)	0.2186(21)	0.5000	1.0	1.32(30)
O(2)	4h	0.1549(18)	0.4907(19)	0.5000	1.0	1.41(39)
O(3)	4g	0.4059(15)	0.3086(19)	0.0000	1.0	1.25(45)
O(4)	2c	0.0000	0.5000	0.0000	1.0	2.36(55)
O(5)	4h	0.0635(21)	0.1280(20)	0.5000	1.0	1.45(35)
O(6)	4g	0.2059(17)	0.0530(14)	0.0000	1.0	0.76(35)
O(7)	4h	0.0040(19)	0.3421(19)	0.5000	1.0	0.96(42)
O(8)	4h	0.3613(17)	0.4360(17)	0.5000	$1.0\,$	2.76(36)

systematic extinctions were unambiguously detected, we were allowed to propose as the possible space group *P*4*bm*. Based on the initial crystal structure model for $Ba₆Ti₂Nb₈O₃₀$ [\(13\)](#page-3-0), the Rietveld refinement was carried out in an isotropic approximation of the thermal parameters. The refinement converged with $R_B = 0.045$, $R_P = 0.061$, $R_{\text{WP}} = 0.079$ for $B_{44} \text{Nd}_{2} \text{Ti}_{4} \text{Ta}_{6} \text{O}_{30}$ and $R_{\text{B}} = 0.036$, $R_{\rm P} = 0.062$, $R_{\rm WP} = 0.082$ for $Ba_5NdTi_3Ta_7O_{30}$. The results for the refinement are listed in Table 1, and the atomic positions and thermal parameters are given in Tables 2 and 3. [Figures 1](#page-2-0) and [2](#page-2-0) show the comparison of the experimental plot with that obtained by refinement, along with the calculated residuals. The selected bond lengths and angles are listed in [Tables 4](#page-3-0) and [5.](#page-3-0) In $Ba_4Nd_2Ti_4Ta_6O_{30}$, the (Ba, Nd)–O bonds range from $2.628(20)$ to $2.843(12)$ Å, and the (Ti, Ta)–O bonds range from $1.816(22)$ to $2.059(18)$ Å. Similarly, the (Ba, Nd) –O bonds range from 2.672(20) to 2.870(20) A and the (Ti, Ta)–O bonds range from $1.834(23)$ to 2.151(18) Å, in $Ba_5NdTi_3Ta_7O_{30}$.

The proposed structures determined for Ba_4Nd_2 The proposed structures determined for $Ba_4Nd_2Ti_4$
Ta₆O₃₀ and $Ba_5NdTi_3Ta_7O_{30}$ are isostructures with $Ba_4La_2Ti_4Nb_6O_{30}$ and $Ba_5LaTi_3Nb_7O_{30}$, respectively, which belong to the filled tungsten-bronze structure with a general formula of $A_6B_{10}O_{30}$ [\(7, 13\).](#page-3-0) In the present tungsten-bronze compounds, ten oxygen-octahedra containing Ta and Ti ions share corner atoms, and larger ions of Nd and Ba fill six cages, four 15-coordinated and two 12coordinated sites.

[Table 6](#page-3-0) gives the dielectric properties of $Ba_4Nd_2Ti_4$ Table 6 gives the dielectric properties of $Ba_4Nd_2Ti_4Ta_6$
O₃₀ and $Ba_5NdTi_3Ta_7O_{30}$ polycrystalline samples. The high dielectric constant (137 \sim 160) and low dielectric loss, tan δ < 7 × 10⁻⁴ at 1 MHz are indicated in the well-sintered

FIG. 1. Observed and calculated X-ray diffraction patterns (Cu*K* α radiation, $\lambda = 1.5406 \text{ Å}$) for Ba₄Nd₂Ti₄Ta₆O₃₀ with their difference shown below.

polycrystalline samples of the present tungsten-bronze compounds. Compared with the previous work [\(9\),](#page-3-0) the dielectric loss for $Ba_5NdTi_3Ta_7O_{30}$ has been decreased

significantly by increasing the powder synthesis temperature to 1300° C, and this might be concerned with the increased crystallinity.

FIG. 2. Observed and calculated X-ray diffraction patterns (Cu*K* α radiation, $\lambda = 1.5406 \text{ Å}$) for Ba₅NdTi₃Ta₇O₃₀ with their difference shown below.

TABLE 4 Selected Bond Distances and Angles for $Ba₄Nd₂Ti₄Ta₆O₃₀$

Bond distances (A)		Bond angles (deg.)		
$Ba(1)-O(3)$	2.652(22)	$O(3)$ -Ba(1)- $O(5)$	113.79	
$Ba(1)-O(5)$	2.631(13)	$O(3) - Ba(1) - O(6)$	78.31	
$Ba(1) - O(6)$	2.628(20)	$O(3) - Ba(1) - O(8)$	122.58	
$Ba(1)-O(8)$	2.726(13)	$O(6) - Ba(1) - O(8)$	122.98	
$Ba(2)-O(1)$	2.777(12)	$O(1) - Ba(2) - O(2)$	149.70	
$Ba(2)-O(2)$	2.819(18)	$O(1) - Ba(2) - O(7)$	86.10	
$Ba(2)-O(7)$	2.843(12)	$O(2) - Ba(2) - O(7)$	55.25	
$Ti(1)-O(1)$	2.017(27)	$O(1) - Ti(1) - O(2)$	98.15	
$Ti(1)-O(2)$	1.967(25)	$O(1) - Ti(1) - O(5)$	90.80	
$Ti(1)-O(5)$	1.957(2)	$O(1) - Ti(1) - O(6)$	91.09	
$Ti(1)-O(6)$	1.969(2)	$O(1) - Ti(1) - O(8)$	172.91	
$Ti(1)-O(8)$	1.921(18)	$O(5)-Ti(1)-O(6)$	87.64	
$Ti(2)-O(1)$	1.902(26)	$O(1) - Ti(2) - O(3)$	91.69	
$Ti(2)-O(3)$	1.988(4)	$O(1) - Ti(2) - O(5)$	174.80	
$Ti(2)-O(5)$	2.042(23)	$O(1) - Ti(2) - O(7)$	101.56	
$Ti(2)-O(7)$	1.816(22)	$O(1) - Ti(2) - O(8)$	93.64	
$Ti(2)-O(8)$	2.059(18)	$O(5)-Ti(2)-O(8)$	81.16	
$Ti(3)-O(2)$	1.899(24)	$O(2) - Ti(3) - O(4)$	90.00	
$Ti(3)-O(4)$	1.951(1)	$O(2) - Ti(3) - O(7)$	96.81	
$Ti(3)-O(7)$	1.982(22)	$O(4) - Ti(3) - O(7)$	90.00	

4. CONCLUSIONS

 $Ba_4Nd_2Ti_4Ta_6O_{30}$ and $Ba_5NdTi_3Ta_7O_{30}$ have been synthesized and identified as tetragonal tungsten-bronze com-

TABLE 5 Selected Bond Distances and Angles for $Ba₅NdTi₃Ta₇O₃₀$

Bond distances (Å)		Bond angles (deg.)		
$Ba(1)-O(3)$	2.747(21)	$O(3) - Ba(1) - O(5)$	113.79	
$Ba(1) - O(5)$	2.739(14)	$O(3) - Ba(1) - O(6)$	89.77	
$Ba(1)-O(6)$	2.732(25)	$O(3) - Ba(1) - O(8)$	118.54	
$Ba(1) - O(8)$	2.672(18)	$O(6) - Ba(1) - O(8)$	118.87	
$Ba(2)-O(1)$	2.730(18)	$O(1) - Ba(2) - O(2)$	155.58	
$Ba(2)-O(2)$	2.788(13)	$O(1) - Ba(2) - O(7)$	82.05	
$Ba(2)-O(7)$	2.870(20)	$O(2) - Ba(2) - O(7)$	55.50	
$Ti(1)-O(1)$	2.025(27)	$O(1) - Ti(1) - O(2)$	85.15	
$Ti(1)-O(2)$	1.964(23)	$O(1) - Ti(1) - O(5)$	97.24	
$Ti(1)-O(5)$	1.877(22)	$O(1) - Ti(1) - O(6)$	97.85	
$Ti(1)-O(6)$	1.966(1)	$O(1) - Ti(1) - O(8)$	178.95	
$Ti(1)-O(8)$	1.969(23)	$O(5)-Ti(1)-O(6)$	89.92	
$Ti(2)-O(1)$	1.961(28)	$O(1) - Ti(2) - O(3)$	87.20	
$Ti(2)-O(3)$	1.967(1)	$O(1) - Ti(2) - O(5)$	172.75	
$Ti(2)-O(5)$	2.151(22)	$O(1) - Ti(2) - O(7)$	96.58	
$Ti(2)-O(7)$	1.834(23)	$O(1) - Ti(2) - O(8)$	92.12	
$Ti(2)-O(8)$	2.049(21)	$O(5)$ -Ti(2)- $O(8)$	80.62	
$Ti(3)-O(2)$	1.921(32)	$O(2) - Ti(3) - O(4)$	90.00	
$Ti(3)-O(4)$	1.964(1)	$O(2) - Ti(3) - O(7)$	94.90	
$Ti(3)-O(7)$	2.047(18)	$O(4) - Ti(3) - O(7)$	90.00	

TABLE 6 Room Temperature Dielectric Characteristics of $Ba₄Nd₂Ti₄$ Ta_6O_{30} and $Ba_5NdTi_3Ta_7O_{30}$ Polycrystalline Samples (at 1 MHz)

Sintering conditions Dielectric constant Composition			$\tan \delta$
$Ba5NdTi3Ta7O30$	$Ba_4Nd_2Ti_4Ta_6O_{30}$ 1310°C × 3 h, in air	137	0.0007
	1450° C × 3 h, in air	160	0.000018

pounds, and their lattice constants are $a = b = 12.4007 \text{ Å}$, $c = 3.9030$ Å and $a = b = 12.4826$ Å, $c = 3.9295$ Å, respectively. These compounds all belong to the possible space group *P*4*bm*. The polycrystalline samples of these compounds exhibit high dielectric constant and low dielectric loss, and this suggests the potential for microwave application of the present materials. Active work on materials development in the present system is in progress by the authors' group.

ACKNOWLEDGMENTS

This work was supported by the Chinese National High-Tech Project under grant 863-715-006-0072 and the Special Program for Outstanding Young Scientists of Zhejiang Province under grant RC98028.

REFERENCES

- 1. D. Kolar, Z. Stadler, S. Gaberscek, and D. Suvorov, *Ber*. *Dtsch*. *Keram*. *Ges*. 55, 364 (1978).
- 2. D. Kolar, S. Gaberscek and B. Volavsek, *J*. *Solid State Chem*. 38, 158 (1981).
- 3. X. M. Chen, Y. Suzuki, and N. Sato, *J*. *Mater*. *Sci*. *Mater*. *Electron*. 6, 10 (1995).
- 4. K. M. Cruickshank, X. Jing, G. Wood, E. E. Lachowski, and A. R. West, *J*. *Am*. *Ceram*. *Soc*. 79, 1605 (1996).
- 5. H. Ohsato, H. Kato, M. Mizuta, S. Nishigaki, and T. Okuda, *Jpn*. *J*. *Appl*. *Phys*. 34, 5413 (1995).
- 6. Y. J. Wu and X. M. Chen, *J*. *Eur*. *Ceram*. *Soc*. 19, 1123 (1999).
- 7. T. Ikeda, T. Haraguchi, Y. Onodera, and T. Saito, *Jpn*. *J*. *Appl*. *Phys*. 10, 987 (1971).
- 8. R. R. Neurgaonkar, W. F. Hall, J. R. Oliver, W. W. Ho, and W. K. Cory, *Ferroelectrics* 87, 167 (1988).
- 9. X. M. Chen and J. S. Yang, *J*. *Eur*. *Ceram*. *Soc*. 19, 139 (1999).
- 10. X. M. Chen, J. S. Yang, and J. Wang, *in* "Dielectric Ceramic Materials" (K. M. Nair and A. S. Bhalla, Eds.), pp. 71-76. Ceramic Soc., 1999.
- 11. JCPDS-ICDD No. 39-0255.
- 12. JCPDS-ICDD No. 39-1445.
- 13. N. C. Stephenson, *Acat Crystallogr*. **18,** 496-501 (1965).